
Entity and Component systems in kbEngine

kbEngine uses an entity-component system to model its gameplay objects. Every object in the game world is an entity that consists of one or more components that dictate how it functions. There are many different types of components like static mesh components, light components, AI logic components, and more.

In addition to entities and components, there are also resources and prefabs. Resources are assets brought in from 3rd party programs such as models, animations, textures, and sounds. Prefabs are user created templates of entities that can be copied into the scene. For example, a desk prefab may be created and used to quickly populate a classroom with desks.

In the image above, the resource "smoke.jpg" is highlighted in the left panel. The selected entity's component list is shown in the right panel. It contains a kbTransformComponent which exposes its position, orientation, and scale. It also has a kbParticleComponent with various parameters to tweak the particle system. The sphere is an entity with a kbStaticMeshComponent that points to the sphere.ms3d resource. The quad marked "DL" is an entity with a kbDirectionalLightComponent which is lighting the sphere.

How components work under the hood
All game components are derived from the kbComponent base class. Here is an example of the WIP kbDQuadWorldGenComponent that is used to generate the procedural world in Thieves in The Night:

There is also a GenerateClass() macro associated with each component. This macro generates a static structure which manages the type information (typeinfo) of the class' serializable variables. kbEngine systems can access a component’s typeinfo to handle tasks like saving/loading entities to/from a file, binding variables to text fields in the editor, etc.

The kbDQuadWorldGenComponent’s GenerateClass() macro is shown here:

This macro is currently generated by hand. However, one of my future plans is to auto generate them as a pre-build step when compiling/building the project. The class and the resulting type information for the kbDQuadWorldGenComponent component roughly look like this:

kbComponent class declarations also include a KB_DECLARE_COMPONENT macro which adds some behind the scenes functionality to a class such as gathering all of the typeinfos in a class’ hierarchies together, providing IsA() style functions, etc

kbComponents are automatically available for use in the editor. The following screenshot shows the list of available components and the kbWorldGenComponent's variables that were made available from the GenerateClass() macros.

image0.wmf

image1.wmf

image2.wmf

image3.wmf

image4.wmf

