
Procedural World Generation in Thieves in the Night

The environments in Thieves in the Night are procedurally generated. The world is divided into individual "chunks" which consist of the terrain, trees, foliage, rocks, and other environment objects. Chunks are generated on a separate thread as needed and presented to the game when ready. This thread is given a pointer to the vertex and collision memory that it needs to fill. To avoid stalls, it's important to avoid writing to vertex buffers that are currently in use by the rendering API and to avoid reading from vertex memory. Also, due to write combining, it's generally considered good practice to write to every single byte sequentially.

A single "chunk" is shown above. The terrain, trees, and rocks are combined into a single mesh.

At runtime, a chunk is built in 2 stages: A terrain generation stage and an environment object generation stage:

Terrain Generation
The chunk's terrain starts out as a regular X by X array of triangles like so:

The heights of the vertices are determined using a Perlin Noise function and smoothed out using the Diamond-square algorithm. By adjusting vertex heights, the algorithm creates mountains, rolling hills, valleys, and other visually interesting terrain. The following steps are applied to the y-coordinates of the vertices:

1) The heights of the corner vertices are determined by feeding their x/z locations into a Perlin Noise function:

2) The height of the midpoint vertex is calculated by averaging the corner heights and then adding some amount of randomness:

3) Using these 5 vertices, the mesh is subdivided into 4 smaller meshes like so:

4) The algorithm is then repeated for each of the new smaller meshes. The recursion continues until the meshes can no longer be subdivided.

Note: The triangles’ normals are slightly bent at random so that the shading between coplanar triangles varies. This helps keep a "triangular" look to the terrain.

World Object Generation
World objects are things like rocks, trees, grass, etc. kbEngine currently only supports the Milkshape3D modelling format (.ms3d):

kbEditor allows the game designer to specify which models should be used when generating chunks. Other parameters such as min/max scale, health (if destructible), etc are exposed for customization:

The editor properties show the .ms3d rocks and trees used to generate the chunks.

During chunk generation, objects from this list are placed at random locations on the terrain. These models are built directly into the terrain’s vertex buffer so that the entire chunk can be rendered with a single draw call. Vertex colors are used to color the triangles. A dynamic texture atlas would allow textured models to be combined into this vertex buffer as well. However, this is not currently done.

In addition to the vertex data, per-triangle collision data for the chunk is also generated during this process. Environment models simply add their visual geometric data to the collision buffer. However, collision detection would be more efficient if a lower poly LOD or a programmatically generated collision hull were added instead.

image0.wmf

image5.wmf

image6.wmf

image1.wmf

image2.wmf

image3.wmf

image4.wmf

